- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Assal, Timothy (1)
-
Assal, Timothy J (1)
-
Bahlai, Christie A (1)
-
Collins, Brandon M (1)
-
Coop, Jonathan D (1)
-
Crausbay, Shelley D (1)
-
Davis, Kimberley T (1)
-
Delgado_de_la_flor, Yvan A (1)
-
Dobrowski, Solomon (1)
-
Falk, Donald A (1)
-
Fornwalt, Paula J (1)
-
Fulé, Peter Z (1)
-
Gardiner, Mary M (1)
-
Harvey, Brian J (1)
-
Higuera, Philip E (1)
-
Hurteau, Matthew D (1)
-
Kane, Van R (1)
-
Littlefield, Caitlin E (1)
-
Margolis, Ellis Q (1)
-
North, Malcolm (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding causes of insect population declines is essential for the development of successful conservation plans, but data limitations restrict assessment across spatial and temporal scales. Museum records represent a source of historical data that can be leveraged to investigate temporal trends in insect communities. Native lady beetle decline has been attributed to competition with established alien species and landscape change, but the relative importance of these drivers is difficult to measure with short‐term field‐based studies. We assessed distribution patterns for native lady beetles over 12 decades using museum records, and evaluated the relative importance of alien species and landscape change as factors contributing to changes in communities. We compiled occurrence records for 28 lady beetle species collected in Ohio, USA, from 1900 to 2018. Taxonomic beta‐diversity was used to evaluate changes in lady beetle community composition over time. To evaluate the relative influence of temporal, spatial, landscape, and community factors on the captures of native species, we constructed negative binomial generalized additive models. We report evidence of declines in captures for several native species. Importantly, the timing, severity, and drivers of these documented declines were species‐specific. Land cover change was associated with declines in captures, particularly forCoccinella novemnotatawhich declined prior to the arrival of alien species. Following the establishment and spread of alien lady beetles, processes of species loss/gain and turnover shifted communities toward the dominance of a few alien species beginning in the 1980s. Because factors associated with declines in captures were highly species‐specific, this emphasizes that mechanisms driving population losses cannot be generalized even among closely related native species. These findings also indicate the importance of museum holdings and the analysis of species‐level data when studying temporal trends in insect populations.more » « less
-
Coop, Jonathan D; Parks, Sean A; Stevens-Rumann, Camille S; Crausbay, Shelley D; Higuera, Philip E; Hurteau, Matthew D; Tepley, Alan; Whitman, Ellen; Assal, Timothy; Collins, Brandon M; et al (, BioScience)null (Ed.)Abstract Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.more » « less
An official website of the United States government
